Acta Cryst. (1976). B32, 2270

Structure Cristalline d'un Tripolyphosphate Acide Mixte Zinc-Argent Nonahydraté: Zn₂Ag_{0.62}H_{0.38}P₃O₁₀.9H₂O

PAR M.T. AVERBUCH-POUCHOT ET J.C. GUITEL

Laboratoire des Rayons X, CNRS, BP 166, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 15 janvier 1976, accepté le 26 janvier 1976)

Zinc tripolyphosphate $Zn_2Ag_{0.62}H_{0.38}P_3O_{10}.9H_2O$ is triclinic (*PT*) with: a = 10.473 (4), b = 10.683 (5), c = 8.629 (3) Å; $\alpha = 101.08$ (1), $\beta = 109.81$ (1), $\gamma = 98.87(1)^\circ$; and Z = 2. The crystal structure has been determined from 4301 independent reflexions. The final *R* is 0.041 for all the reflexions. This atomic arrangement is characterized by a three-dimensional network of channels containing the water molecules.

Introduction

Cette étude fait suite à deux articles concernant la détermination de la structure cristalline des deux premiers tripolyphosphates de cations bivalents connus jusqu'alors: $Zn_5(P_3O_{10})_2$. 17H₂O (Averbuch-Pouchot, Durif & Guitel, 1975) et $Zn_2HP_3O_{10}$. 6H₂O (Averbuch-Pouchot & Guitel, 1976). Ce nouveau travail s'inscrit dans le cadre d'une étude systématique des tripolyphosphates entreprise dans notre laboratoire.

Préparation chimique

Dans une suspension aqueuse de trimétaphosphate d'argent ($Ag_3P_3O_9$. H_2O), on introduit une solution de chlorure de zinc et de chlorure d'un cation alcalin (K, Li ou NH₄), les trois constituants étant en proportion équimoléculaires. Il se forme alors un précipité de chlorure d'argent que l'on élimine par filtration. Si on abandonne la liqueur, ainsi obtenue, à la température ambiante pendant une semaine, il apparaît des cristaux prismatiques de formule

 $Zn_2Ag_xH_{1-x}P_3O_{10}.9H_2O$ (x étant voisin de 0,5).

La formation de ce composé nécessite quelques remarques: la présence inattendue d'ions Ag^+ ne peut s'expliquer que par un défaut en ions Cl^- et par une faible solubilité du trimétaphosphate d'argent; l'apparition de l'anion P_3O_{10} provient de l'hydrolyse toujours possible, en milieu aqueux de l'anion P_3O_9 .

Caractérisfiques cristallines

L'étude d'un cristal par la méthode de Weissenberg montre que ce sel est triclinique et donne des valeurs approximatives des paramètres de réseau. Des valeurs plus précises sont obtenues à partir de mesures angulaires effectuées sur un cliché fait à l'aide d'une chambre de Guinier fonctionnant à la longueur d'onde K α du fer. Elles sont les suivantes: a=10,473 (4), b=10,683(5), c=8,629 (3) Å; $\alpha=101,08$ (1), $\beta=109,81$ (1), $\gamma=$ 98,87 (1)°. La maille a un volume de 865,9 Å³ et renferme deux unités formulaires.

Ce composé est à rapprocher du tripolyphosphate $Zn_2NaP_3O_{10}.9H_2O$ (fiche ASTM 7-83) dont les par-

amètres de réseau ont pour dimensions: a = 10,60, b = 10,67, c = 8,65 Å; $\alpha = 100,10$, $\beta = 110,00$, $\gamma = 99,05^{\circ}$.

L'étude prochaine de la structure cristalline de ce dernier sel nous indiquera s'il y a vraiment isotypie entre ces deux composés.

Le Tableau 1 donne le dépouillement de poudre de $Zn_2Ag_xH_{1-x}P_3O_{10}.9H_2O$.

Les d_{obs} sont calculés à partir des valeurs angulaires utilisées pour la détermination des paramètres de maille.

Techniques expérimentales

Le cristal choisi était un prisme de forme quelconque qui mesurait 0,15 mm dans sa plus grande dimension.

Tableau 1. Dépouillement d'un diagramme de poudre de $Zn_2Ag_xH_{1-x}P_3O_{10}.9H_2O$

h k l	d_{cal}	d_{obs}	I_{obs}
010	10.18	10.22	10
100	9.57	9,60	8
110	7.98	7,99	1
001	7.83	_	•
TÕI	7.65	7.65	6
011	7.19	7.19	8
1 1 T	6.32	_	
1 1 0	6,27	-	
T 1 1	5,93	-	
011	5,54	5,54	1
1 T 1	5,30	-	
101	5,17	5.17	<1
020	5,09	5,08	1
201	5,02	5,01	1
120	5,02		
021	4,90	4,90	1
210	4,79	4,78	2
200	4,78		
$\overline{2}$ 1 1	4,65	4,66	<1
12T	4,38	-	
211	4,36	4,35	2
1 2 1	4,34		
T 0 2	4,23	-	
112	4,18	4,18	1,5
1 1 1	4,14	4,13	< 1
T 2 1	4,11	-	
120	4,11	-	
012	4,03	4,03	<1
220	3,992	3,993	1
210	3,982	-	
002	3.916	-	

Tableau 1 (suite)

0 2 1	3 833	_	
2021	2,000	3 877	15
202	3,020	5,027	1,5
	3,720	2 6 9 2	~ 1
$\frac{2}{1}$ 1 1	3,00/	3,003	< 1
	3,081	2 ((2	. 1
$2 \frac{1}{2} \frac{2}{2}$	3,003	3,062	< 1
022	3,594	-	<1
122	3,586	3,585	< 1
201	3,530	3,530	
212	3,505	-	
130	3,469	-	
031	3,465	-	
301	3,448	-	
22T	3,439	3,441	< 1
311	3,415	-	
2 2 1	3,407	3,408	2
030	3,395	_	
1 1 2	3,371	3.371	<1
012	3,370	-,	
113	3,338	3.339	2
ŝŤŎ	3,274	3.273	<1
102	3 221	3,219	<1
300	3,190		••
131	3 1 8 3		
1 7 7	3 1 8 1	3 1 7 9	1
1 2 2	3 180	5,175	1
$\frac{1}{2} \frac{2}{2} \frac{1}{2}$	3,160	2 160	2
222	3,102	5,100	2
2 3 0	3,143	-	
220	3,135	-	
311	3,134	-	2
302	3,122	3,126	2
$\frac{2}{2}$ 1 1	3,068	_	
3 2 1	3,062	3,061	< 1
320	3,049	3,049	<1
<u>1</u> 31	3,029	3,027	1
312	3,004	3,006	2
<u>122</u>	3,001		
130	2,984	2,983	<1
032	2,982		
312	2,966	2,968	3
222	2,965		
231	2,924	_	
132	2,915	2,911	2
2 3 1	2,911		

Les intensités de 4301 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre Philips PW 1100. La longueur d'onde utilisée était celle du molybdène monochromatisée par un cristal de graphite. L'intervalle angulaire θ exploré était compris entre 4 et 30°. Chaque réflexion était balayée à la vitesse de 0,05° s⁻¹ dans un domaine de 1,20°. Le fond continu a été mesuré durant 4 s à chaque extrémité de ce domaine d'intégration qui était exploré en balayage θ , Ω couplé. Aucune variation significative des trois réflexions de référence (800, 216 et 216) n'a été remarquée durant les mesures. En raison des dimensions suffisamment petites du cristal et de la longueur d'onde utilisée, aucune correction d'absorption n'a été nécessaire.

Détermination de la structure

L'étude de la fonction de Patterson a permis de localiser les atomes de Zn, P et Ag. Des synthèses de Fou-

rier successives, effectuées dans le groupe $P\overline{1}$ ont ensuite révélé les positions des atomes d'oxygène et des molécules d'eau.

A ce stade, il restait à faire quelques cycles d'affinement pour préciser d'une part, les paramètres de positions atomiques et les facteurs de température et, d'autre part, la proportion d'argent contenu dans le composé. En raison de la forte corrélation existant entre le facteur de température d'un atome et le taux d'occupation de son site, nous avons fait varier successivement l'un et l'autre de ces deux paramètres pour aboutir à la valeur de 0,62 pour x. La formule du composé s'écrit alors $Zn_2Ag_{0,62}H_{0,38}P_3O_{10}.9H_2O$. Si l'on écarte 545 raies très faibles, la série d'affinements réalisée au moyen du programme *SFLS*-5 de Prewitt (1966) et dans le groupe PI donne au facteur R la valeur de 0,035. Pour la totalité des réflexions (4301) ce même facteur est de 0,041.

Les paramètres des positions atomiques et les facteurs thermiques isotropes B_{eq} sont consignés dans le Tableau 2, les facteurs de température anisotropes dans le Tableau 3, les longueurs et directions des axes des ellipsoïdes de vibration thermique dans le Tableau 4.*

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31643: 88 pp., 2 microfiches). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 2. Paramètres des positions atomiques $et B_{ea}$

Les écarts standard sont donnés entre parenthèses.

x	У	Z	B_{eq}
0,0	0,0	0,0	1,30
0.5	0,5	0,5	1,34
0,49618 (3)	0,04802 (3)	0,76801 (4)	1,26
0,02347 (6)	0,14238 (5)	0,41954 (7)	3,62
0,28901 (7)	0,06500 (6)	0,96031 (9)	1,01
0,28297 (7)	0,22409 (6)	0,27121 (9)	1,01
0,54975 (7)	0,20593 (6)	0,50696 (8)	1,00
0,1318 (2)	0,0281 (2)	0,8766 (3)	1,41
0,3581 (2)	0,1101 (2)	0,8459 (3)	1,53
0,6536 (2)	0,0404 (2)	0,9625 (3)	1,75
0,3341 (2)	0,1964 (2)	0,1159 (3)	1,41
0,1374 (2)	0,1459 (2)	0,2189 (3)	1,40
0,3115 (2)	0,3688 (2)	0,3377 (3)	1,58
0,3803 (2)	0,1636 (2)	0,4084 (3)	1,42
0,6042 (2)	0,1185 (2)	0,3961 (3)	1,89
0,5762 (2)	0,1765 (2)	0,6774 (3)	2,00
0,5999 (2)	0,3489 (2)	0,5243 (3)	1,65
0,9045 (2)	0,1471 (2)	0,8992 (3)	2,18
0,4445 (2)	0,4848 (2)	0,7154 (3)	2,39
0,2179 (3)	0,2796 (3)	0,6786 (4)	3,28
0,9180 (5)	0,3233 (5)	0,3853 (6)	7,24
0,8724 (3)	0,0610 (3)	0,5479 (3)	2,93
0,6914 (4)	0,4345 (3)	0,9201 (4)	4,87
0,6609 (4)	0,3106 (3)	0,1590 (5)	5,30
0,0716 (3)	0,3656 (3)	0,8927 (4)	4,13
0,9066 (4)	0,4842 (5)	0,6707 (6)	6,34
	x 0,0 0,5 0,49618 (3) 0,02347 (6) 0,28901 (7) 0,54975 (7) 0,1318 (2) 0,3581 (2) 0,3581 (2) 0,3341 (2) 0,3341 (2) 0,3341 (2) 0,3115 (2) 0,3803 (2) 0,5762 (2) 0,5999 (2) 0,5945 (2) 0,5945 (2) 0,5945 (2) 0,9045 (2) 0,9045 (2) 0,9180 (5) 0,8724 (3) 0,6914 (4) 0,609 (4) 0,0716 (3) 0,9066 (4)	xy $0,0$ $0,0$ $0,5$ $0,5$ $0,49618$ (3) $0,04802$ (3) $0,02347$ (6) $0,14238$ (5) $0,28901$ (7) $0,22409$ (6) $0,28297$ (7) $0,22409$ (6) $0,54975$ (7) $0,20593$ (6) $0,1318$ (2) $0,0281$ (2) $0,3581$ (2) $0,1101$ (2) $0,6536$ (2) $0,0404$ (2) $0,3341$ (2) $0,1459$ (2) $0,3174$ (2) $0,1636$ (2) $0,5762$ (2) $0,1765$ (2) $0,5762$ (2) $0,1765$ (2) $0,5999$ (2) $0,3489$ (2) $0,945$ (2) $0,1471$ (2) $0,945$ (2) $0,1471$ (2) $0,945$ (2) $0,1475$ (3) $0,9180$ (5) $0,3233$ (5) $0,8724$ (3) $0,0610$ (3) $0,6609$ (4) $0,3465$ (3) $0,9066$ (4) $0,4842$ (5)	xyz $0,0$ $0,0$ $0,0$ $0,5$ $0,5$ $0,5$ $0,49618$ (3) $0,04802$ (3) $0,76801$ (4) $0,02347$ (6) $0,14238$ (5) $0,41954$ (7) $0,28901$ (7) $0,02500$ (6) $0,96031$ (9) $0,28297$ (7) $0,22409$ (6) $0,27121$ (9) $0,54975$ (7) $0,20593$ (6) $0,50696$ (8) $0,1318$ (2) $0,0281$ (2) $0,8766$ (3) $0,3581$ (2) $0,1101$ (2) $0,8459$ (3) $0,6536$ (2) $0,0404$ (2) $0,9625$ (3) $0,3341$ (2) $0,1459$ (2) $0,2189$ (3) $0,3174$ (2) $0,1459$ (2) $0,2189$ (3) $0,3115$ (2) $0,3688$ (2) $0,3377$ (3) $0,3803$ (2) $0,1636$ (2) $0,4084$ (3) $0,6042$ (2) $0,1185$ (2) $0,3961$ (3) $0,5762$ (2) $0,1765$ (2) $0,6774$ (3) $0,5999$ (2) $0,3489$ (2) $0,5243$ (3) $0,9045$ (2) $0,1484$ (2) $0,7154$ (3) $0,9180$ (5) $0,3233$ (5) $0,3853$ (6) $0,8724$ (3) $0,0610$ (3) $0,5479$ (3) $0,6609$ (4) $0,3106$ (3) $0,1590$ (5) $0,0716$ (3) $0,3656$ (3) $0,8927$ (4) $0,9066$ (4) $0,4842$ (5) $0,6707$ (6)

.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Zn(1)	277 (4)	352 (4)	500 (7)	15 (3)	117 (4)	77 (4)
Zn(2)	362 (4)	227 (4)	639 (7)	47 (3)	130 (4)	92 (4)
Zn(3)	363 (3)	322 (3)	529 (5)	124 (2)	199 (3)	146 (3)
Ag	1091 (6)	944 (5)	1434 (9)	165 (4)	814 (6)	220 (5)
P(1)	260 (6)	279 (5)	411 (10)	87 (5)	140 (6)	101 (6)
P(2)	241 (6)	214 (5)	467 (9)	34 (5)	126 (6)	24 (6)
P(3)	287 (6)	195 (5)	446 (9)	43 (5)	122 (6)	85 (6)
O(E11)	285 (20)	453 (18)	481 (30)	80 (15)	110 (20)	96 (19)
O(E12)	437 (21)	450 (19)	686 (32)	189 (16)	367 (21)	203 (20)
O(E13)	470 (21)	402 (19)	684 (32)	181 (16)	58 (22)	222 (20)
O(<i>L</i> 12)	378 (21)	323 (18)	582 (31)	11 (15)	243 (20)	20 (19)
O(E21)	279 (21)	372 (18)	532 (31)	-36(15)	152 (20)	1 (19)
O(E22)	401 (21)	259 (18)	752 (32)	108 (16)	123 (21)	1 (19)
O(L23)	284 (20)	325 (18)	689 (30)	31 (15)	114 (20)	156 (18)
O(E31)	424 (23)	380 (20)	900 (34)	127 (17)	223 (22)	-69(21)
O(E32)	536 (22)	537 (21)	618 (31)	-40 (17)	99 (21)	330 (21)
O(E33)	376 (19)	240 (16)	992 (35)	56 (14)	186 (21)	168 (19)
O(W1)	542 (23)	512 (21)	1087 (39)	208 (18)	282 (24)	310 (23)
O(<i>W</i> 2)	732 (27)	626 (23)	939 (38)	170 (20)	426 (26)	304 (24)
O(W3)	931 (32)	828 (29)	1557 (52)	303 (25)	542 (34)	657 (32)
O(W4)	2175 (75)	1680 (63)	3450 (118)	895 (55)	1107 (77)	1336 (73)
O(W5)	700 (28)	984 (30)	1035 (42)	274 (23)	373 (28)	4085 (29)
O(<i>W</i> 6)	1439 (47)	1043 (38)	1210 (53)	211 (33)	- 15 (40)	-115 (36)
O(W7)	1660 (54)	779 (34)	2737 (87)	134 (34)	1062 (57)	242 (43)
O(<i>W</i> 8)	1132 (39)	723 (30)	2089 (67)	97 (27)	604 (42)	360 (36)
O(W9)	1097 (45)	2294 (68)	3143 (100)	995 (46)	907 (55)	1482 (70)

Tableau 3. Paramètres d'agitation thermique anisotropes ($\beta_{ij} \times 10^5$)

 Tableau 4. Longueurs des axes principaux des ellipsoïdes de vibration des atomes et orientation par rapport aux axes cristallographiques

	U (Å)	θ°/a	θ°/b	θ°/c		U(Å)	θ°/a	θ°/b	θ°/c
Zn(1)	0.144	115	17	97	O(L23)	0.156	120	72	29
	0.128	115	95	7	0()	0,130	107	26	119
	0,110	37	74	88		0.113	35	71	94
Zn(2)	0,149	127	91	18	O(E31)	0,195	102	129	2.8
	0,130	38	109	72	0(200)	0.142	39	77	82
	0,109	85	19	94		0.116	127	42	64
Zn(3)	0,138	63	58	74	O(E32)	0.208	137	47	64
	0,122	116	114	16	~ /	0.142	49	69	78
	0,119	141	42	86		0.111	100	130	29
Ag	0,251	53	127	62	O(E33)	0,181	110	90	11
-	0,219	75	37	82		0,134	21	105	89
	0,163	139	91	30		0,109	85	15	101
P(1)	0,122	77	30	88	O(W1)	0,189	100	73	32
	0,112	86	113	25		0,166	41	57	118
	0,105	13	109	115		0,141	130	38	104
P(2)	0,129	91	125	27	O(<i>W</i> 2)	0,189	59	68	69
	0,107	22	117	115		0,181	134	35	85
	0,102	68	47	79		0,149	120	116	22
P(3)	0,121	139	81	33	O(<i>W</i> 3)	0,241	90	58	51
	0,116	50	103	59		0,202	2	101	108
	0,100	83	16	103		0,162	92	146	45
O(E11)	0,157	93	6	103	O(<i>W</i> 4)	0,351	79	62	55
	0,128	128	86	21		0,315	157	93	49
	0,114	38	95	74		0,230	109	28	119
O(E12)	0,165	66	60	69	O(W5)	0,229	89	25	83
	0,142	75	148	55		0,175	22	108	88
	0,104	51	81	43		0,169	112	107	7
O(E13)	0,177	146	94	37	O(<i>W</i> 6)	0,304	33	73	134
	0,153	78	44	72		0,252	120	26	103
	0,108	59	133	59		0,171	79	71	47
O(L12)	0,159	118	44	123	O(<i>W</i> 7)	0,309	63	110	47
	0,121	80	46	68		0,255	153	84	44
·	0,118	150	94	41		0,202	84	21	92
O(E21)	0,163	112	27	116	O(W8)	0,256	95	93	18
	0,125	121	76	26		0,237	19	117	101
	0,104	39	67	93		0,188	72	28	105
O(E22)	0,174	119	114	20	O(<i>W</i> '9)	0,370	87	44	66
	0,134	36	94	76		0,270	116	121	24
	0,109	109	25	76		0,177	26	117	88

Description de la structure

Les Figs. 1 et 2 représentent les projections de la structure respictivement sur le plan *ab* et sur le plan *ac*.

Elles montrent que nous sommes en présence d'un édifice atomique tridimensionnel dont la cohésion est assurée par les cations. Ces derniers possèdent deux types d'environnement: une coordination octaédrique pour les atomes de zinc Zn(1) et Zn(2) placés sur les centres de symétrie $(0,0,0 \text{ et } \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ et pour l'atome d'argent; une coordination tétraédrique pour l'atome Zn(3).

On peut remarquer que les voisinages tétraédriques sont assurés uniquement par des atomes d'oxygène

Fig. 1. Projection de la structure sur le plan ab.

Fig. 2. Projection de la structure sur le plan ac.

Fig. 3. Détail de l'anion tripolyphosphate P₃O₁₀, projeté suivant **a**.

O(Eij) provenant des groupements P_3O_{10} et ne possédant qu'une seule liaison avec le phosphore, tandis que les voisinages octaédriques mettent en jeu en plus des atomes d'oxygène du type précédent des molécules d'eau. En outre, on peut constater que dans les coordinations octaédrique les atomes d'oxygène sont des atomes O(E2j) liés au phosphore central et des atomes O(E1j) ou O(E3j) liés à l'un des phosphores extrèmes du groupement P_3O_{10} .

Dans la coordination tétraédrique, on ne trouve que des atomes d'oxygène O(E1j) et O(E3j).

Les distances interatomiques dans l'environnement des cations Ag et Zn sont données dans le Tableau 5.

 Tableau 5. Distances interatomiques dans les environnements du zinc et de l'argent

$Zn(1)-O(E11) \times$	2 2.031 (3) Å	$Zn(2)-O(E22)\times 2$	2 2,088 (2) Å
$Zn(1) - O(E21) \times$	2 2,103 (2)	$Zn(2) - O(E33) \times 2$	2 2,062 (2)
$Zn(1) - O(W1) \times 2$	2 2,159 (2)	$Zn(2)-O(W2) \times 2$	2,156 (3)
Zn(3) - O(E12)	1,941 (3)	Ag - O(E11)	2,647 (2)
Zn(3) - O(E13)	1,942 (2)	Ag - O(E21)	2,417 (3)
Zn(3) - O(E31)	1,933 (2)	Ag = O(W3)	2,461 (2)
Zn(3)-O(E32)	1,925 (3)	Ag - O(W4)	2,390 (5)
		Ag - O(W5)	2,372 (3)
		Ag = O(W5)	2.600 (3)

En ce concerne l'anion P_3O_{10} , on retrouve des distances interatomiques et des angles de liaison (Tableau 6 et Fig. 3) comparables à ceux donnés dans la description des structures cristallines d'autres tripolyphosphates (Corbridge, 1974; Averbuch-Pouchot *et al.*, 1975; Averbuch-Pouchot & Guitel, 1976).

Une caractéristique marquante de cet arrangement atomique est la présence de quatre molécules d'eau qui ne font partie d'aucun environnement de cations. Ce sont O(W6), O(W7), O(W8) et O(W9). Les distances de ces molécules avec leurs plus proches voisins sont indiquées dans le Tableau 7. Tableau 6. Distances interatomiques (Å) et principaux angles (°) de liaison dans l'anion P_3O_{10}

P(1) - O(E11)	1,509 (2)	P(1) - O(E13)	1,519 (2)
P(1) - O(E12)	1,515 (3)	P(1) - O(L12)	1,628 (2)
	, ,,		, , ,
O(L12) - O(E11)	2,539 (2)	O(L12)-P(1)-O(E11)	108,1 (1)
O(L12) - O(E12)	2,450 (3)	O(L12) - P(1) - O(E12)	102.4 (l)
O(L12) - O(E13)	2,530 (3)	O(L12) - P(1) - O(E13)	107.0 (l)
O(E11) - O(E12)	2.517 (3)	O(E11) - P(1) - O(E12)	112.7 (1)
O(E11) - O(E13)	2,512 (3)	O(E11) - P(1) - O(E13)	112.2 (1)
O(E12) - O(E13)	2.541 (3)	O(E12) - P(1) - O(E13)	113.7 (1)
- (, - (,	_,_ (_ ,		, (-)
P(2) - O(E21)	1,492 (2)	P(2)O(L12)	1,599 (3)
P(2) - O(E22)	1,489 (2)	P(2) - O(L23)	1,596 (2)
O(L23) - O(E21)	2,473 (3)	O(L23) - P(2) - O(L12)	103,7 (1)
O(L23) - O(E22)	2,533 (3)	O(L23) - P(2) - O(E21)	106,4 (1)
O(L23) - O(L12)	2,513 (3)	O(L23) - P(2) - O(E22)	110,4 (1)
O(E21) - O(E22)	2,554 (3)	O(L12) - P(2) - O(E21)	109,9 (1)
O(E21) - O(L12)	2,533 (4)	O(L12) - P(2) - O(E22)	107,6 (1)
O(E22) - O(L12)	2,492 (3)	O(E21) - P(2) - O(E22)	117.9 (1)
	, , ,		, (-,
P(3) - O(E31)	1,518 (3)	P(3) - O(E33)	1,501 (2)
P(3) - O(E32)	1,509 (3)	P(3) - O(L23)	1,632 (2)
., . ,	, ,,		, ,,
O(L23)-O(E31)	2,498 (3)	O(L23) - P(3) - O(E31)	104,8 (1)
O(L23) - O(E32)	2,491 (3)	O(L23) - P(3) - O(E32)	104,8 (1)
O(L23) - O(E33)	2,551 (3)	O(L23) - P(3) - O(E33)	108,9 (1)
O(E31) - O(E32)	2,518 (4)	O(E31) - P(3) - O(E32)	112,5 (1)
O(E31) - O(E33)	2,515 (3)	O(E31) - P(3) - O(E33)	112,8 (1)
O(E32) - O(E33)	2,498 (3)	O(E32) - P(3) - O(E33)	112,2 (1)
P(1)P(2)	2,917 (1)	P(1) - O(L12) - P(2)	129,4 (1)
P(2)P(3)	2,911 (1)	P(2) - O(L23) - P(3)	128,8 (1)
P(1)P(3)	4,397 (1)		

Tableau 7. Distances interatomiques des molécules d'eau ne participant pas à l'environnement du zinc et de l'argent à leurs plus proches voisins

O(W6)-O(E32) O(W6)-O(E33) O(W6)-O(W2) O(W6)-O(W7) O(W6)-O(W8)	2,918 (4) Å 3,125 (4) 2,796 (4) 2,736 (6) 2,772 (4)	O(W7)-O(E13) O(W7)-O(W2) O(W7)-O(W4) O(W7)-O(W6)	3,034 (4) Å 2,797 (5) 2,708 (6) 2,736 (6)
O(W8)-O(W1) O(W8)-O(W3) O(W8)-O(W6) O(W8)-O(W9)	2,719 (4) 2,883 (5) 2,772 (4) 2,765 (6)	O(W9)-O(E22) O(W9)-O(E33) O(W9)-O(W4) O(W9)-O(W4) O(W9)-O(W8)	2,957 (5) 3,024 (4) 2,773 (7) 2,770 (8) 2,765 (6)

Enfin, cette structure cristalline possède des canaux reliés entre eux et parallèles aux trois directions **a**, **b** et **c** de la maille. Ces canaux sont délimités par les oxygènes des groupements P_3O_{10} . Ils contiennent les molécules d'eau et les atomes d'argent.

Références

Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. (1975). B31, 2453–2456.

- AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1976). Acta Cryst. B32, 1670–1673.
- CORBRIDGE, D. E. C. (1974). The Structural Chemistry of Phosphorus. Amsterdam: Elsevier.

PREWITT, C. T. (1966). SFLS-5. A Fortran IV Full-matrix Crystallographic Least-squares Program.

Acta Cryst. (1976). B32, 2274

The Crystal and Molecular Structure of exo-7-Chloro-7-phenyl-2,5-dioxabicyclo[4,1,0]heptane

By JOEL D. OLIVER, GALE HENSLEE AND PEDER E. RUSH

Department of Chemistry and the Killgore Research Center, West Texas State University, Canyon, Texas 79016, U.S.A.

(Received 1 December 1975; accepted 26 January 1976)

The structure of *exo*-7-chloro-7-phenyl-2,5-dioxabicyclo[4,1,0]heptane has been determined by singlecrystal X-ray diffraction methods. The crystals are monoclinic, $P2_1/n$ with a=5.840 (1), b=16.039 (1), c=10.692 (1) Å, $\beta=90.919$ (6)° and Z=4. Intensity data were collected on a manually operated diffractometer using Cu K α radiation. The structure was solved by direct methods and has been refined by block-diagonal least-squares techniques to R=0.068 (weighted R=0.056) including all the hydrogen atoms. The geometry of the cyclopropyl ring is normal. The dioxanyl ring has adopted an envelope conformation in which three of the C-O distances are significantly shortened. This unusual geometry of the six-membered ring is the consequence of the strain introduced by fusion of the three-membered and six-membered rings.

Introduction

The title compound, hereinafter referred to as DOBH, has been isolated as the single product of the reaction between benzal chloride, potassium t-butoxide and 1,4-diox-2-ene (Oliver, Woodyard, Rush & Curtis, 1974); however physical and analytical data did not allow unambiguous assignment of the stereochemistry for the compound. An interest in molecules containing a highly strained ring fused to a formerly strain-free ring resulted in our focusing attention on this compound. The structural results yield informa-